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ABSTRACT

Thc optimum data aC4uisition and managcmcnt of a typical Bristol Bay sockcyc salmon
fishcry havc hccn cxprcsscd as a prohlem in statistical dccision thcory. Optimality has hccn
detincd as that sct of sC4uentiai dccision rules that minimizcs thc Bayes risk ovcr thc dura­
tion of thc run. Economic losscs or costs arc ascrihcd to ,1C4uisitiol1 of catch and cscapcmcl1t
data in such a manl1cr that an optimal data aC4uisition schcme can hc dctincd in addition
to dctining thc sct of optilllallllanagcmcl1t stratcgics.

The management and inHhore harveHting of
Halmon HtockH charaeteriHtically conHist of Hev­
eral interrelated phaHeH. Stock aHseHHment and
run profiling are of importance both to the man­
agement perHonnel and to HegmentH of the in­
dUHtry in planning their reHpective operationH.
Prior knowledge of the run Hize and time pro­
file iH uHeful in the JJI'eliminary planning of a
management Htrategy that will in Home way per­
mit the eHcapement of the deHired number of
Hpawnel'H. Similarly, Huch information alHo
HerveH the induHtry in planning the level of itH
anticipated aetivitieH (MathewH, 1\)67). The
theoretical inveHtigation deHcribed here waH mo­
tivated by Hpecific conHideration of the data gath­
el'ing and management HchemeH currently ap­
plied in the BriHto) Bay Hockeye Halmon fiHher­
ieH. However, the formulation iH relatively
abHtract and of Hufficient generality HO that,
properly interpreted, it may apply to a variety
of fishery Hituations which are evolutionary or
time val:ying in nature. Indeed, it iH thiH dy­
namic aspect of the problem that is at once the
crucial feature of the analysis and alHo the
principal Hource of analytical and computation­
al difficulty,

Rothschild and Balsiger (1971) treated the
optimum management of the Kvichak fishery
of RriHtol Bay aH a problem ill lineal' program-
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ming in which the various entitieH compl'lHlIlg
the run could be optimally allocated, subject to
various constraintH on eHcapement, sex ratios,
etc., over the duration of the run. Optimality
was chosen as that set of allocation rules which
maximized the economic return, expreHHed aH a
linear objective function, subject to the satisfac­
tion of a Het of lineal' inequality conHtraintH.
This formulation and solution as a lineal' pro­
gram are particularly powerful since the solu­
tion, eaHily obtained oy standard techniques, is
particularly rich in interpretive detail.

The formulation and solution as a lineal' pro­
gram Huffer from several disadvantages, as
Rothschild and Balsiger noted in their paper.
First, the solution is deterministic in that it
aSHumeH preciHe knowledge of the run Hize and
its time profi Ie. In actual practice, although
there iH conHiderable investment in stock aHHeHH­
ment and run forecasting, the resulting' esti­
mates are subjeet to considerable variation. Sec­
ond, not all of the constrai nts are "ft rm," i.e.,
inviolable. This applieH especially to the escape­
ment. Presumably a unique optimum escape­
ment for each actual realization of the run ex­
ists, but it iH not neceHHarily imperative that thiH
escapement be attained. Instead it may be as­
sumed that an escapement below the optimum is
accompanied by some economic 1m,s, Huitably
discounted, for the diminiHhed future returns.
Similarly, an excessive escapement will result
in a loss due to the decreased catch and, if in
the right-hand tail of a dome-shaped (Rickel'
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type) spawner-return curve, there will be an
additional loss due to decreased returns. Final­
Iy. the linear programming formulation is es­
sentially static although Hillier and Lieberman
(1967) discuss certain techniques that are ap­
plicable to a limited class of stochastic and dy­
namic allocation problems. However, the only
such technique that would be readily applicable
to the fishery management case is chance con­
strained programming in which the admissibil­
ity of "soft" constraints. i.e., constraints which
may be violated with certain allowable proba­
bilities. is permitted.

In the subsequent analysis an attempt is made
to simulate directly the inherently stochastic
and dynamic nature of the management of a
typical salmon fishery. A brief discussion of the
assumptions made as well as a comparison with
the linear programming formulation of Roths­
child and Balsiger will also be given. This com­
parison of methods should be considered to be
somewhat subjective and retlects, to a certain
extent, the author's l,wn opinions and predilec­
tions. The interested reader may be able to arrive
at more meaningful comparisons and conclu­
sions after studying the respective analyses in
more detail.

We will assume here gear of fixed selectivity
with regard to sexes and year classes. This
corresponds to the status quo with respect to
Bristol Bay although Rothschild and Balsiger
showed that an optimum allocation among the
various entities comprising the run was eco­
nomically advantageous, particularly in the
case of altered sex ratios. The fixed selectivity
assumption, which results in an allocation
based only on total numbers offish, is made prin­
cipally in the interests of tractability although
it is possible to generalize the loss functions and
probability densities to include the various indi­
vidual entities.

Hillier and Lieberman list and discuss the
basic features which serve to characterize dy­
namic programming problems. The principal
characteristics will he repeated here, paraphrased
slightly, and it will be shown here and in the
subsequent analysis that the salmon fishery man­
agement problem conforms quite naturally to
the class of problems for which dynamic pro­
gramming is applicable.
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1) The problem can be divided into stages
with a policy decision required at each
stage. This is obviously the case in
Bristol Bay where the stages consh,t of
discrete fishing periods. for each of which
a management decision must be made.
Discreteness is not an essential feature,
however, since continuous time alloca­
tion problems may also be treated by
dynamic programming techniques.

2) Each stage has associated with it a (pos­
sibly infinite) number of states. The state
of the system is somewhat difficult to
characterize precisely. It will be sufficient
to treat the state of the system, in this
case the salmon fishery, at the start of
any stage as reflecting the true state of
nature, e.g., run size, time profile, mi­
gration patterns, etc., as well as the ef­
fects of all previous policy decisions
through the preceding time period. Close­
ly related is:

3) The effect of the policy decision at each
stage is to transform the current state
into a state associated with the next
stage. We will generalize this slightly
to include sequentially acquired data as
an additional quantity serving to char­
acterize the state of the system and the
transformation from one state to the
next. The remainder of the characteriz­
ing features enumerated by Hillier and
Lieberman are related to the very funda­
mental "Principle of Optimality," the
statement and discussion of which will
will be deferred until the section on
Discussion.

The close correspondence of the concepts of
dynamic programming, and also the closely
related sequential statistical decision theory,
to the problem of salmon fishery management
suggests that together they provide potentially
powerful tools for the description and simula­
tion of such processes. A caveat is appropriate
here, however. In general there will be the loss
of a considerable portion of the economic "fine
structure" of the problem, particularly in com­
parison with the solution as a linear program.
The solution of the linear programming primal
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and its dual allows one to make inferences be­
yond simply the attainment of the optimum.
This was emphasized adequately by Rothschild
and Balsiger in their identification and discus­
sion of the various shadow prices, etc. A more
serious reservation concerns the very serious
analytical and computational difficulties to be
anticipated. It is a truism of dynamic program­
ming that many more problems may be formu­
lated than may be solved, and it is not at all
certain at present whether the salmon fisheries
problem falls into the soluble category. Thus,
the present discussion will be confined to the
presentation of the theory, which is self-con­
tained. The very difficult problems of formula­
tion of the loss functions and the selection of
optimum decision rules will be the subject of
subsequent investigations.

THEORY

It is helpful to think of the salmon run, its
assessment, and its management as evolution­
ary processes in time. Prior to the start of fish­
ing the management biologist has at his dis­
posal certain prior information, such as pre­
season forecasts, on which to base his early
management strategy. As the run proceeds,
additional data are gathered so that, as his
knowledge of the true state of nature increases,
he may modify his strategy to conform more
closely to the optimum strategy. This will now
be developed more formally.

Assume that the entire run occurs over a
total of III discrete nonoverlapping time inter­
vaiR. If n. iR the number of fiRh entering the
flRhery on'the ith day then the total run size,
Ntot. iR given by

m

N tot = L n
j
• (1)

; = 1

Define a parameter vector .Q, of arbitrary
dimenRion, that iR aRRumed to characterize all
relevant detailR of the run. AR a Rpecific ex­
ample, we could define 0 of the III-dimensional
vector (n 1 , n2 ,. .. nm ), i.~, the ith component of
.Q is the number of fish entering the fishery on
the ith day. More generally, we can leave 0
arbitrary and write nj = n; (0). For e~h
known .Q there existR Rome kno~n Ret of op-

timum allocation rules 77; (O)(i = 1, ... III)

where 77; iR the optimum f;:action of the fiRh
to be allocated to the catch on the ith day. For
example, the linear programming formulation
of RothRchiid and BalRiger provided a Ret of
optimum allocation ruleR based on a fixed total
run size and a two parameter time profile pro­
pORed by Royce (1965).

Let D be a finite set of decision I'Ules and let
0;, a member of D, be the decision adopted on

the ith day. Typically the set D conRists of such
management deciRions as fiRhery opening or
closing, fiRhing area limitations, etc. For each
0; there will be an actual allocation 77; where,

in general, both 77i and iii will be random
variables. The former will depend on the true
(unknown) state of nature, 0, while the latter
will aiRo be a random functi<-;-;l of 0 as well aR
of the decision taken. 0;. As th; actual and
optimum allocations differ, various economic
10sseR will be aRsumed to accrue, and the aver­
age or expected 10RR will be these losses aver­
aged over all pORsible outcomeR. This will be
developed more formally after considering the
various 10RS functions.

We may postulate the existence of an overall
loss function that reflects economic losses from
all sources. For our purposes we will consider
the IORs as aJ'iRing only from 1) the cost of
data acquiRition, 2) the catch, and 3) the es­
capement. Since the catch and the escapement
are complementary quantities, their sum com­
prising the total run, we could consider either
one individually as iR done in a subRequent ex­
ample using the Rickel' (1958) spawner-return
relation. However, an individual treatment of
each permits the separate discussion of loss
functionR that are linear, additive, and sepa­
rable, aR for the catch. and those which are
nonlinear and not additive, as will be pORtulated
for the escapement.

First consider the cost of data acquisition.
Generally, the sampling schemes to be used
and the level of effort for each are selected
prior to the run. There may be in-season varia­
tions, such as occasional stream surveys, etc .
but the cost associated with these is much less
than that allocated prior to the run. We denote
the experimental design symbolically by t
and, in line with the above argument, there is
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·1 The specification of the minimum Bayes risk as the
criterion of optimality, while a reasonable one, is some·
what arbitrary. Other criteria are in common use, most
notably the "Minimax," in which the optimum strategy is
that which minimizes the maximum risk.

group. Also, excessive escapement may lead to
increased competition for food among the fry to
the general detriment of the population as a
whole. Thus, to a first approximation, the loss
function for the escapement depends only on
the final values of the actual and optimum es­
capements. Symbolically this may be written as

is the actual escapement and ¢ C,') denotes
some suitable functional form. An even more
general formulation is possible if the possibility
is admitted that the magnitude and timing of
the arrivals on the spawning beds are also sig­
nificant. The loss function must still be ex­
pressed in terms of the entire run but the func­
tional form would be of the type

LE(m) ~ (:>' (E] ,E2 •. E",; F:]'}~2•... }3",) (3')

where Ei and Ei are, respectively, the optimum
and actual escapements for the ith time period.
However, the determination of the optimum
total level of escapement, which is necessary
to characterize ¢ (E, E), is a subject of current
research and is by no means resolved at present.
Thus, the characterization of a function of the
gplCralityof ¢'(E], E 2 , •.. Em; E1 , E2 , •..

Em) must await further biological data.
The Bayes risk is defined as the average or

expected loss where the averaging is over all
possible outcomes and an optimum strategy
will be defined as that strategy that minimizes
the Bayes risk.·· An expression for the Bayes
risk will now be constructed that is appropriate
for the salmon management problem just out-

associated with <- some fixed cost C(n. The
quanitity <-, which is an abstract designation
of the experimental design, will also appear as
a conditioning quantity when we consider the
various probability density functions associated
with the sampled quantities, i.e., the distribu­
tion of the sample estimates will depend on,
among other things, the manner in which the
data are acquired.

Next is the loss associated with the catch.
Consider the start of the kth time period where
1 ~ k ~ 11/ but otherwise arbitrary. If the eco­
nomic value of the catch is assumed to be linear
and additive, we may write

k-l

Lv (k) = "'" V 11),· (0) - ~. In. (0) (2).'\. ~l .......... 1,.........,

i = 1

as the loss through the (k - l)st time period for
the cate·h.:l Here Vi is the unit value of the fish
for the ith interval. Note that if iii exceeds
1)j' i.e., the actual catch exceeds the optimum
catch, the loss function is negative and becomes
a gain function. However, this apparent bene­
fit must be offset by the loss associated with
the corresponding decreased escapement. If
this were not the case, then this would not be
the correct optimum since any departure from
the optimum must result in a nonnegative in­
cremental loss.

Finally consider the loss function for the
escapement. This function cannot be considered
to be linear or additive since the average num­
ber of returns per unit of spawners escaping on
any particular day will be a function primarily
of the final value of the total escapement. This
is a consequence of the fact that late spawners
may interfere with the redds of the earlier ar­
rivals and thus diminish the returns for this

"If the ~apa~ity of the ~annery be~omes limiting. as
may happen in ~ycle years, the loss fun~tion for the ~at~h

may be written in slightly more general form as

k - I
l'x(K) - ~ VdTJinj(l) - min ITijnj(O), cap(i) I} (2')

i = 1

where ~ap(i) denotes the ~annery ~apacity for the ith time
period. This relation implies that any a~tual ~at~h that
ex~eeds the ~annery ~apa~ity will not de~rease the cor·
responding loss. This function is no longer linear but it is
still additive. Note also that no ~ost has been ascribed to
the additional economically nonproductive fishing effort.
Cannery capacity was one of the constraints imposed by
Rothschild and Balsiger in their paper.
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LE(m) = ¢ (E, E)

where
m

I> "'" (1 -1) n (0)~ 11,-."..,

i = 1

is the optimum total escapement while
m

f:= "'" (1- r7) n. (0)~ I l ..........

i = 1

(3)

(4a)

(4b)
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lined. Consider the start of the kth time period
where 1 ~ k ~ III but otherwise arbitrary. The
management biologist has at his disposal data
observed through the (k - l)st period which will
be designated by eyo, YI,".,[h-l)' This is an
abstract designation for data which may typi­
cally be in the form of catch reports, catch per
unit effort data, tower counts, etc. By conven­
tion Yo represents the preseason information,
such as the high-seas forecast, that is obtained
prior to the start of the run. However, all future
outcomes must be considered since the loss
function for the escapement is formulated in
terms of the final state of the system. The vector
Q. which characterizes both the run and the
corresponding set of optimum allocation rules,
is, from the biologists' point of view, an un­
known parameter whose value he is attempting
to infer. Generally 0 may be considered to
have some underlying prior distribution which
may be inferred from historical data, etc. As
additional data are gathered, the probability
density of Q may be successively updated to
reflect this additional information. Thus the
probability density for Q at the beginning of
the kth period may be written as

f" (Q I Yo' YI'Y/,-I;\)

where the prior data,eYo' YI"'Y,,_I),and the
manner in which it is obtained, t, appear as
conditioning quantities.

N ow consider the distribution of the actual
allocation ~,. Generally iii will be a random
variable whose distribution will depend on the
action taken, 8" and on the true state of nature,
Q. Thus the probability density of -q, may be
written in conditional form as gi(-q,18" Q).
This tacitly assumes that the allocation result­
ing from a decision taken during any particular
time period is independent of the outcomes dur­
ing any other time period which in turn implies
that the individual fish is vulnerable during only
a single time period. This condition is generally
fairly well satisfied in most of Bristol Bay
where the fishing districts are relatively small
and the fish do not delay in their upstream
migrations. Exceptions occur occasionally dur­
ing extreme tides when the fish may enter and
leave the fishery more than once before pro­
ceeding upstream. A similar exception would

occur if a fishing district were of sufficient size
that individual fish must necessarily spend
more than a single time period in it. In these
more general cases we must include all prior
allocations as conditioning quanitities, i.e., the
appropriate density would be of the form
g,(-q,I-ql' -q2,···iii-1' 8,,2). An equivalent
but more concise notation would be to condi­
tion the distribution of -qi by 8i and by the
state of the system at the start of the ith time
period, S" i.e., g, (-qiI8"SJ That this is an
equivalent conditioning follows from our pre­
vious definition of the state of the system as
reflecting the true state of nature as well as the
effects of all previous policy decisions. If we
retain the assumption of independence of the
allocations, the joint probability density of
(-q" -q2, .. ·1]m) may be written in factored form
as

m

g (1]" -q2,···-qm 18 1 , D2,.. ·D m ;2) = 1T g, (-qi IDi,Q)·
i = I

(5)

It is now possible to construct the risk func­
tions appropriate for the start of the kth time
period where, as usual, k is arbitrary. The ex­
perimental cost, C( t ), has been assumed fixed
in advance in which case it is equal to its ex­
pected value. Thu" the fir"t term of the risk,
R1,h ( I; ), is given simply by

(6)

for all k.
The risk function associated with the catch

may be thought of as consisting of two parts.
The first part is the risk corresponding to the
loss already accrued through the kth time pe­
riod for which the management decisions have
already been made. The second is the risk over
the remainder of the run for which the decisions
D/l + 1 ,oh+2,· .. 811l remain to be made. From
(2) and (5) we obtain

/l

~VifdQf'l(QIYo' Y1 '''.,[h-l; 1;)
i = 1
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for the risk through the kth time period. Al­
thoug-h we are considering- the start of the kth
time period, II,-l will have been acquired so
that ok may be chosen on the basis of this and
all previous observations. Similarly, the risk
over the remainder of the run is given by

R 3 •1, (ok+1' 0k+2,···om IIo, I1, .. ·Ik-1; n =

m

L v;fdiU'l (Qllo' II ,..-I"-1; n
i = Il 1

f dfi- (77· (0) - ry. ) n. (0) g. (ry ·10.; 0 )
I I......... I I """"-' I I 1-...

(8)

(7), (8), and (9) may be obtained if we assume
1) a steady state spawner-return relation of the
type proposed by Ricker (1958) and 2) the
economic loss (or g-ain) is proportional to the
catch. The steady state Ricker spawner-return
relation is

(11)

where the parameter vector () (II l' II 2)

describes the run and Ntot and E denote the
actual run size and the escapement respectively.
The corresponding catch is given by

or

The appropriate loss function in terms of the
catch is

(12)

from which it follows that the optimum escape­
ment, E, is given by the solution of

where, in an implicit sense, the decisions (jk+ 1,

0k+2, ...Om will be conditional upon the prior
decisions 0],02,.··0" as well as upon the ob­
servations Yo, Y 1, ... Y"-]' Equations (7) and (8)
have a similar~tructure although in Equation
(7) we are weighting past decisions by our
present knowledg-e of the state of nature while
in Equation (8) the future decisions must
necessarily reflect only the information ob­
tained through the (k-l)st time period.

The risk for the escapement is assumed to be
nonseparable so that the entire run must be
considered at once. The general expression for
this portion of the risk is then given by

L (X, X) = ~ (X - X) (14)

III

fd~1Il 1J[E(Q),E(~l'lb.. rylll)1 1Tgi(~iloi;Q)·
i = 1

where v is the average unit value of the fish.
The equivalent expression

(9)

The total Bayes risk is then the sum of the risks
given by (6), (7), (8), and (9), i.e.,

I A _ -OEA_OE A

L (E, E) = v [0] (Ee 2 - Ee 2 ) - (E - E)]

(15)

These equations have been derived under
very g-eneral conditions and assumptions with
little effort towards characterizing- any of the
functions indicated. It is interesting to note,
however, that loss functions of the same general
form as those appearing- in the integ-rands of

4

R" =~RI,/,.
i = I

(10)

in terms of the escapement is easily obtained by
substituting (12) in A (14). The term v0]
[exp (-0 zE) - exp (-0 zE) ] is non Iinear while
v(E - E) is a linear and additive function of
the daily escapements. The substitution of
(15) into (9) would then result in an integ-ral
of the same general form as (9) and two addi­
tional integrals corresponding to (7) and (8).

As indicated earlier, the experimental design,
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" is usually fixed prior to the start of fishing
and, except for minor variations, remains essen­
tially unchanged during the run. We define the
optimum experimental design, ,*, by

. -- - -- - *
mmR O (01,02,···om;n=Ro (01,02, .. ·om;' )

\ (16)

where the overbars on the {O;} denote aver­
aging overall allowable decision rules ° in the
set D and the risks are determined prior to the
taking of any observations. Similarly, the op­
timum decision rules (8 i ' 8;, ... 8;11) are
that set of decisions that minimizes the average
risk over the duration of the run.

DISCUSSION

A mathematical description of a salmon fish­
ery that includes both stochastic and dynamic
elements has been formulated although the final
result is relatively general and somewhat ab­
stract. Indeed, the mathematics was formulat­
ed specifically to simulate the actual assess­
ment and management of the typical Bristol
Bay sockeye salmon fishery. The statistician or
management biologist periodically acquires ad­
ditional data, such as catch reports and test
fishing results, from which he can make repeat­
edly more refined estimates of the true state of
nature. Also, although perhaps quite uncon­
sciously, he attempts to estimate the losses (or,
if an optimist, the gains) associated with any
course of action and the relative probability of
occurrence of these losses. Then, based on all
data obtained to date, including all past deci­
sions and outcomes, he attempts to formulate
a future strategy that will minimize his risk.
The analysis of the preceding section attempted
to express this sequence of events in a more
formalized and quantitative manner.

The apparent fidelity of statistical decision
theory to the real world suggests that it pro­
vides a very general theoretical tool for the
description of such processes. However, the im­
plementation of such a theory may give rise to
some practical problems of considerable difficul­
ty, some of which were discussed in the Intro­
duction. In particular it was emphasized there
that the ability to formulate a problem as a

dynamic program or, almost equivalently, as a
problem in sequential statistical decision theory,
by no means assures that a solution may be
obtained. In this section some additional gen­
eral features of dynamic programming, as they
apply to the fisheries management problem just
formulated, will be further elaborated.

The set of optimum decision rules has been
defined as that set that minimizes the Bayes
risk over the duration of the run. From this it
follows that the kth decision must be chosen
optimally as a function of the set of prior ob­
servations (Yo,Y1'''' Y't-l) and as a function of
all prior decisions (8 1 ,8 2 , ... 8k _ 1 ). In other
words, 0 must be chosen at each stage in an
optimal manner taking into account all prior
observations and decisions. At this point we
continue Hillier and Lieberman's (1967) char­
acterization of dynamic programming, the first
three principles of which were presented in the
Introduction. Their principle number four states
that: Given the current state of the system, an
optimal policy for the remaining stages is inde­
pendent of the policies adopted in the previous
stages. This is a paraphrase of the fundamental
"Principle of Optimality" of Bellman (1957,
p. 83) which states that: "An optimal policy
has the property that whatever the initial state
and initial decision are, the remaining decisions
must constitute an optimal policy with regard
to the state resulting from the first decision."
The principle of optimality thus assures that
the policy we have specified is indeed an optimal
policy.

The contradiction, which is more apparent
than real, will now be resolved between the
principle of optimality just stated and our
previous contention that the choice of an optimal
decision 8't depends not only on (Yo, Y I,'"

r k-tl but also on the previous decisions ( 8 1 ,

8 2 ""8k -1)' Recall that the state of the system
at time k, say, Sk' is assumed to be uniquely
determined by (Yo, Yl, ..Xk-tl, (01' 8 2 ,,,,

Ok_I)' and 0 , the true state of nature. The
converse is n;rt true, however, since a multi­
plicity of different decisions and observations
may lead to the same Sk. i.e., there is generally
no unique path to Sk' Thus, while it is perhaps
more appropriate to state that the optimum
Ok is a function only of Sk' it should be borne
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in mind that Sit has been uniquely determined
by past decisions and observations so that, in
an implicit sense, the toJ(i ~ I, 111) are not
generally mutually independent.

Consider now a typical Bristol Bay salmon
fishery. The usual allowable decision rules con­
sist of either opening or closing the fishery. In
addition the management biologists also have
the option of allowing fishing over an increased
or decreased area depending on whether the
run is larger or smaller than normal. Thus, in
the most general case, a total of four distinct
strategies is available although it is unlikely
that both increased and decreased fishing areas
would be used during a single season.~' In the
usual case, then, a total of three distinct strate­
gies is available each day from which it follows
that a total of 3m separate courses of action
may be pursued during a fishing season III days
long. Typically III is equal to about 20 days in
Bristol Bay so that the total number of allow­
able strategies is of the order of lOll. This is not
a number to be taken lightly and is an example
of what Bellman (1957, p. 6) refers to as "The
Curse of Dimensionality."

The principle of optimality, which is particu­
larly useful in multistage allocation processes,
may be invoked in an effort to reduce this prob­
le~ in many dimensions to a sequence of prob­
lems in one dimension. Assume that we are at
the beginning of the IIIth time period where the
state of the system is characterized by Sm where
Sm reflects the obHervations (Yo, Il,,,Xm-tl
as well as past decisions ( ,) 1,8 2 •... Om-d. Thus
the only decision at our dispmml is °m and
presumably an optimal om may be chosen as
a function of Sm' Consider next the beginning
of the (m-l)st time period for which the Hystem
is characterized by Sm-l' For every 0m-l se­
lected and executed the system is transformed,
after the acquisition of the data Y m-1. into the
state Sm for which an optimal decision has
already been obtained. Thus at this stage we
need optimize only with reHpect to Om-I' In
this manner we can proceed backward to the
beginning of the firHt time period, characterized

~> It is also possible to impose waiting periods for the
entry of gear into selected fisheries but this will not be
considered here.
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by an SI depending on Yo at which point an op­
timal 0 I is selected.

ThiH backward recursive scheme is typical
of the method of attack on dynamic program­
ming problems. For a concise but elegant ex­
ample of this technique applied to a simulated,
but numerical. fishery problem see RothHchild
(1970). The particular example he used had dis­
crete stages in time with a finite number of
strategies available for each stage. The desired
solution described the optimum sequence, or
path, in time of visiting various fisheries, for a
fixed total number of time periods, so that the
total catch was maximized. While highly ideal­
ized, this problem constitutes a true dynamic
program. However, it lacks the stochastic fea­
tures that are an essential feature of the pres­
ent discussion.

Verbally this method of solution appears to
be most attractive since we have apparently
overcome the problem of excessive dimension­
ality by the recursive consideration of a se­
quence of problems of lower dimension. This
feature is emphasized in the previously cited
example presented by Rothschild. However, in
problems of larger scale, either in terms of the
number of stages or the number of possible
states per stage, a rather more subtle problem
of dimensionality. appears. This concerns the
successive specifications of the states of the sys­
tem {s"l (h = I, .. m). We recall that SIc is char­
acterize! not only by Q. the true state of nature,
but all prior observations (Io' .Il,,,X't-l)
and all prior decisions (° 1,° 2,...°,,_1)' The
observation vectors are necessarily multidi­
mensional, each component of which represents
a particular piece of data or the observation of
a particular entity. To make matters worse,
the dimension of the Ii will generally increase
with i since new forms of data, such as catch
reports, tower counts, catch per unit of effort,
etc., will become successively available. Thus,
the tIi}(i = a, ...h - 1) required to specify Sit will
bring with them their own dimensionality
which will soon become overwhelming unless
Sit can be described adequately by relatively
few parameters. Obviously, aside from possible
computer core limitations, the most useful al­
gorithms are those that can accommodate the
requisite dimensionality. Ina more practical
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sense, however, cognizance must be taken of
dimensionality problems to avoid foundering
in details, many of which may be irrelevant.

Possible alternative procedures to decrease
the number of strategies to consider would be
to: 1) combine various contiguous time periods
into longer units and thus effectively decrease
III and 2) reject those strategies that, based on
the value of Yo available, have a ~mfficiently

high a priori probability of being nonoptimal.
The combining of time periods would be par­
ticularly appropriate near the beginning and
end of the run when relatively few fish are
entering the fishery and the consequences of
nonoptional procedures are not so serious,
Also, the necessity to consider increased or de­
creased fishing areas can often be resolved prior
to the start of fishing by consideration of the
preseason information contained in Yo'
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